Image segmentation by unsupervised sparse clustering q

نویسندگان

  • Byoung-Ki Jeon
  • Yun-Beom Jung
  • Ki-Sang Hong
چکیده

In this paper, we present a novel solution for image segmentation based on positiveness which regards the segmentation as a graphtheoretic clustering problem. Contrary to spectral clustering methods using eigenvectors, the proposed method tries to find an additive combination of positive components from an originally positive data-driven matrix. By using the positiveness constraint, we obtain sparsely clustered results which do not include cancellations by negative entries. Thus, we call this method sparse clustering. The proposed method adopts a binary tree structure and solves a model selection problem by automatically determining the number of clusters using intraand inter-cluster measures. We tested our method with image sequences as well as single frame data such as points and gray-scale, color, and texture images. Moreover, in order to objectively evaluate the performance of our method, we compared the results of the proposed method with those of the human segmentation and the Ncut method using various images including the Berkeley datasets. Experimental results show that the proposed method provides very successful and encouraging segmentations. 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Multiscale Annealing for Real-Time Unsupervised Texture Segmentation

We derive real{time global optimization methods for several clustering optimization problems commonly used in unsupervised texture segmentation. Speed is achieved by exploiting the image neighborhood relation of features to design a multiscale optimization technique, while accuracy and global optimization properties are gained using annealing techniques. Coarse grained cost functions are derive...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006